Journal of Approximation Theory

Polynomial approximation of analytic functions on a finite number of continua in the complex plane

Vladimir Andrievskii
Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

Received 15 October 2003; received in revised form 11 November 2004; accepted in revised form 31 December 2004

Abstract

The Dzjadyk-type theorem concerning the polynomial approximation of functions on a continuum in the complex plane \mathbb{C} is generalized to the case of polynomial approximation of functions on a compact set in \mathbb{C} which consists of a finite number of continua. © 2005 Elsevier Inc. All rights reserved.

MSC: 30E10; 41A10

Keywords: Polynomial; Approximation; Interpolation

1. Introduction

Let $E \subset \mathbb{C}$ be a compact set with the connected complement $\Omega:=\overline{\mathbb{C}} \backslash E$, where $\overline{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}$ is the extended complex plane. Denote $A(E)$ the class of all functions that are continuous on E and analytic in the interior of E. The case of empty interior is also considered. Let $\mathbb{P}_{n}, n \in \mathbb{N}_{0}:=\{0,1,2, \ldots\}$, be the class of complex polynomials of degree at most n. For $f \in A(E)$ and $n \in \mathbb{N}_{0}$, define

$$
E_{n}(f, E):=\inf _{p_{n} \in \mathbb{P}_{n}}\left\|f-p_{n}\right\|_{E},
$$

[^0]where $\|\cdot\|_{E}$ denotes the supremum norm on E. By the Mergelyan theorem [6, p. 339]:
$$
\lim _{n \rightarrow \infty} E_{n}(f, E)=0 \quad(f \in A(E))
$$

The behavior of $E_{n}(f, E)$ is closely related to smoothness properties of f and the geometrical structure of E. The most delicate part of this theory, known as Dzjadyk-type theorems, concerns pointwise estimates of the behavior of $\left|f(z)-p_{n}(z)\right|$ on the boundary $L:=\partial E$ of E. We refer the reader to $[6,16,13,4]$ and the many references therein for a comprehensive survey of this subject. We would like to observe that the overwhelming majority of Dzjadyktype direct theorems are proved for the case when E is a continuum, i.e., Ω is simply connected. The case when Ω is multiply connected is discussed only in a few papers (cf. $[10,11,14,15,9,3])$. Each time the extension of a result from the case of a continuum to the case of a compact set uses quite specific and non-trivial constructions.

In this paper we show how this extension can be accomplished by using well-known Bernstein-Walsh lemma on the growth of a polynomial outside the compact set and the Walsh theorem on polynomial approximation of a function analytic in a neighborhood of a compact set with connected complement.

As a sample of a Dzjadyk-type theorem we use a recent result about simultaneous approximation and interpolation of functions on continua in the complex plane [5, Theorem 1].

2. Main results

In the sequel we denote c, c_{1}, \ldots positive constants (possibly different in different occurrences) that may depend on parameters inessential to the argument.

First, let E be a continuum (with the connected complement $\Omega:=\overline{\mathbb{C}} \backslash E$). The most general continua, for which the direct Dzjadyk-type theorems can be proved, form the class $H^{*}[1]$ which is defined as follows. We say that $E \in H$ if any two points $z, \zeta \in E$ can be joined by an arc $\gamma(z, \zeta) \subset E$ whose length $|\gamma(z, \zeta)|$ satisfies the condition

$$
\begin{equation*}
|\gamma(z, \zeta)| \leqslant c|z-\zeta|, \quad c=c(E) \geqslant 1 . \tag{2.1}
\end{equation*}
$$

Let us compactify the domain Ω by prime ends in the Carathéodory sense [12]. Let $\tilde{\Omega}$ be this compactification, and let $\tilde{L}:=\tilde{\Omega} \backslash \Omega$. Suppose that $E \in H$, then all the prime ends $Z \in \tilde{L}$ are of the first kind, i.e., they have singleton impressions $|Z|=z \in L$. The circle $\{\xi:|\xi-z|=r\}, 0<r<\frac{1}{2} \operatorname{diam}(E)$, contains one arc or finitely many arcs, dividing Ω into two subdomains: an unbounded subdomain and a bounded subdomain such that Z can be defined by a chain of cross-cuts of the bounded subdomain. Let $\gamma_{Z}(r)$ denote the arc whose unbounded subdomain is the largest for given Z and r. Thus, the $\operatorname{arc} \gamma_{Z}(r)$ separates the prime end Z from ∞.

If $0<r<R<\frac{1}{2} \operatorname{diam}(E)$, then $\gamma_{Z}(r)$ and $\gamma_{Z}(R)$ are the sides of the quadrilateral $Q_{Z}(r, R) \subset \Omega$ whose other two sides are the parts of L. Let $m_{Z}(r, R)$ be the module of this quadrilateral, i.e., the module of the family of arcs that separate the sides $\gamma_{Z}(r)$ and $\gamma_{Z}(R)$ in $Q_{Z}(r, R)$ [8, p. 133].

We say that $E \in H^{*}$ if $E \in H$ and there exist $c=c(E)<\frac{1}{2} \operatorname{diam}(E)$ and $c_{1}=c_{1}(E)$ such that

$$
\begin{equation*}
\mid m_{Z}(|z-\zeta|, c)-m_{\mathcal{Z}}(|z-\zeta|, c) \leqslant c_{1} \tag{2.2}
\end{equation*}
$$

for any prime ends $Z, \mathcal{Z} \in \tilde{L}$ with their impressions $z=|Z|, \zeta=|\mathcal{Z}|$ satisfying $|z-\zeta|<c$.
In particular, H^{*} includes domains with quasiconformal boundary (see [8]) and the classes B_{k}^{*} of domains introduced by Dzjadyk [6]. For a more detailed investigation of the geometric meaning of conditions (2.1) and (2.2), see [2].

We study functions defined by their k th modulus of continuity $(k \in \mathbb{N}:=\{1,2, \ldots\})$. There is a number of definitions of these moduli in the complex plane (see [16]). The definition by Dyn'kin [7] is the simplest to explain. Set

$$
D(z, \delta):=\{\zeta:|\zeta-z| \leqslant \delta\} \quad(z \in \mathbb{C}, \delta>0)
$$

The quantity

$$
\omega_{f, k, E}(\delta):=\sup _{z \in E} E_{k-1}(f, E \cap D(z, \delta))
$$

where $f \in A(E), k \in \mathbb{N}, \delta>0$, is called the k-th modulus of continuity of f on E. It is known (cf. [16, Chapter 5]) that the behaviour of this modulus for $E \in H$ is essentially the same as in the classical case of the interval $E=[-1,1]$. In particular,

$$
\begin{equation*}
\omega_{f, k, E}(t \delta) \leqslant c t^{k} \omega_{f, k, E}(\delta) \quad(t>1, \delta>0) \tag{2.3}
\end{equation*}
$$

Denote $w=\Phi_{E}(z)$ the function which maps Ω conformally and univalently onto $\Delta:=$ $\{w:|w|>1\}$ and is normalized by the conditions

$$
\Phi_{E}(\infty)=\infty, \Phi_{E}^{\prime}(\infty)>0
$$

Let

$$
\begin{aligned}
& L_{\delta, E}:=\left\{\zeta \in \Omega:\left|\Phi_{E}(\zeta)\right|=1+\delta\right\} \quad(\delta>0), \\
& \rho_{\delta, E}(z):=\operatorname{dist}\left(z, L_{\delta, E}\right)=\sup _{\zeta \in L_{\delta, E}}|z-\zeta| \quad(z \in \mathbb{C}, \delta>0) .
\end{aligned}
$$

Theorem 1. Let $E=\cup_{j=1}^{m} E_{j}$ consist of $m \in \mathbb{N}$ disjoint continua $E_{j} \in H^{*}, f \in$ $A(E), k \in \mathbb{N}$, and let $z_{1}, \ldots, z_{N} \in E$ be distinct points. Then for any $n \in \mathbb{N}, n>N+k$, there exists a polynomial $p_{n} \in \mathbb{P}_{n}$ such that

$$
\begin{aligned}
& \left|f(z)-p_{n}(z)\right| \leqslant c_{1} \omega_{f, k, E_{j}}\left(\rho_{1 / n, E_{j}}(z)\right) \quad\left(z \in \partial E_{j}, j=1, \ldots, m\right) \\
& p_{n}\left(z_{l}\right)=f\left(z_{l}\right) \quad(l=1, \ldots, N)
\end{aligned}
$$

with c_{1} independent of n.
For $j=1$, Theorem 1 is proved in [5, Theorem 1]. For $j>1$, the theorem extends the results from $[10,11,9]$ to more general compact sets and new classes of functions. However,
the main advantage of Theorem 1 is its relatively simple proof which follows immediately from [5, Theorem 1], (2.3), the inequality

$$
\rho_{2 \delta, E_{j}}(z) \leqslant c \rho_{\delta, E_{j}}(z) \quad\left(z \in \partial E_{j}, \delta>0\right)
$$

(see [5, (2.1)]) and the following statement which is, in itself, of interest.
Theorem 2. Let $E=\cup_{j=1}^{m} E_{j}$ consist of $m \in \mathbb{N}, m \geqslant 2$, disjoint continua $E_{j}, f \in$ $A(E),\|f\|_{E} \leqslant 1$, and let $z_{1}, \ldots, z_{N} \in E$ be distinct points. Let for any $n>n_{0} \in \mathbb{N}$ and $j=1, \ldots, m$ there be a polynomial $p_{n, j} \in \mathbb{P}_{n}$ such that

$$
\begin{aligned}
& \left|f_{j}(z)-p_{n, j}(z)\right| \leqslant \varepsilon_{j}\left(\frac{1}{n}, z\right) \quad\left(z \in \partial E_{j}\right) \\
& p_{n, j}\left(z_{l}\right)=f_{j}\left(z_{l}\right) \quad\left(z_{l} \in E_{j}\right)
\end{aligned}
$$

where $f_{j}:=\left.f\right|_{E_{j}}$ is the restriction offto E_{j}, and the function $\varepsilon_{j}(\delta, z), 0<\delta \leqslant 1, z \in \partial E_{j}$, satisfies, for any $j=1, \ldots, m$ and $z \in \partial E_{j}$, the properties:
(i) $\varepsilon_{j}(\delta, z)$ is monotonically increasing in δ;
(ii) $\left|\varepsilon_{j}(\delta, z)\right| \leqslant 1 \quad\left(\delta \leqslant \delta_{0} \leqslant 1\right)$.

Then for any $n \in \mathbb{N}, n>c_{1}\left(n_{0}+1 / \delta_{0}\right)$ there exists a polynomial $p_{n} \in \mathbb{P}_{n}$ such that

$$
\begin{aligned}
& \left|f(z)-p_{n}(z)\right| \leqslant \varepsilon_{j}\left(\frac{c_{2}}{n}, z\right)+c_{3} e^{-c_{4} n} \quad\left(z \in \partial E_{j}, j=1, \ldots, m\right), \\
& p_{n}\left(z_{l}\right)=f\left(z_{l}\right) \quad(l=1, \ldots, N),
\end{aligned}
$$

where $c_{k}, k=1,2,3,4$, depend only on E and the choice of points z_{1}, \ldots, z_{N}.

3. Proof of Theorem 2

Denote $g_{\Omega}(z, \infty), z \in \Omega$, the Green function of Ω with pole at ∞ (see [17]). We extend it continuously to E by setting $g_{\Omega}(z, \infty)=0$ for $z \in E$, and consider sets

$$
E_{r}:=\left\{z \in \Omega: g_{\Omega}(z, \infty)<r\right\} \quad(r>0)
$$

Denote r_{E} to be the maximal positive number such that E_{r} consists of exactly m components for $r \leqslant r_{E}$. We also introduce another geometric characteristic of E as follows:

$$
R_{E}:=\max _{1 \leqslant j \leqslant m}\left\|\log \left|\Phi_{E_{j}}(\cdot)\right|\right\|_{\partial E}
$$

By the maximum principle for harmonic functions

$$
\log \left|\Phi_{E_{j}}(z)\right|-g_{\Omega}(z, \infty) \quad(j=1, \ldots, m)
$$

considered in Ω, we have

$$
r_{E} \leqslant R_{E}
$$

Now, let $j=1, \ldots, m$ be fixed. Consider the function

$$
h_{j}(z):= \begin{cases}1, & z \in E_{j}, \\ 0, & z \in E \backslash E_{j} .\end{cases}
$$

This function can be extended analytically to $E_{r_{E}}$. Hence, by the Walsh approximation theorem [17, pp. 75-76] there is $\mu_{0}^{*}=\mu_{0}^{*}(E) \in \mathbb{N}$, such that for any $\mu>\mu_{0}^{*}$ there is a polynomial $q_{\mu, j}^{*} \in \mathbb{P}_{\mu}$ satisfying the inequality

$$
\left\|h_{j}-q_{\mu, j}^{*}\right\|_{E}<e^{-\mu r_{E} / 2}
$$

Therefore, the polynomial

$$
q_{\mu, j}(z)=q_{\mu, j}^{*}(z)+\sum_{l=1}^{N} \frac{\omega(z)}{\omega^{\prime}\left(z_{j}\right)\left(z-z_{l}\right)}\left(h_{j}\left(z_{l}\right)-q_{\mu, j}^{*}\left(z_{l}\right)\right),
$$

where

$$
\omega(z):=\prod_{l=1}^{N}\left(z-z_{l}\right),
$$

is of degree at most max $(\mu, N-1)$. This polynomial for $\mu>\mu_{0}=\mu_{0}\left(E, z_{1}, \ldots, z_{N}\right)>$ $\mu_{0}^{*}+N-1$ satisfies the following conditions:

$$
\begin{aligned}
& \left\|h_{j}-q_{\mu, j}\right\|_{E}<c e^{-\mu r_{E} / 2}<e^{-\mu r_{E} / 3}, \\
& q_{\mu, j}\left(z_{l}\right)=h_{j}\left(z_{l}\right) \quad(l=1, \ldots, N) .
\end{aligned}
$$

Let $\mu>\mu_{0}, v>\mu_{0}\left(n_{0}+1 / \delta_{0}\right)$. Consider the polynomial $s_{v+\mu, j}:=p_{v, j} q_{\mu, j}$ (of degree at most $v+\mu)$ and the function $\tilde{f}_{j}:=f h_{j}$.

Note that

$$
s_{v+\mu, j}\left(z_{l}\right)=\tilde{f}_{j}\left(z_{l}\right) \quad(l=1, \ldots, N)
$$

Moreover, for $z \in \partial E_{j}$, we obtain

$$
\left|p_{v, j}(z)\right| \leqslant\left|p_{v, j}(z)-f(z)\right|+|f(z)| \leqslant 2 .
$$

Therefore, for $z \in \partial E_{j}$, we have

$$
\begin{align*}
\left|\tilde{f}_{j}(z)-s_{v+\mu, j}(z)\right| & \leqslant\left|f_{j}(z)-p_{v, j}(z)\right|+\left|p_{v, j}(z) \| h_{j}(z)-q_{\mu, j}(z)\right| \\
& \leqslant \varepsilon_{j}\left(\frac{1}{v}, z\right)+2 e^{-\mu r_{E} / 3} . \tag{3.1}
\end{align*}
$$

Next, for $z \in \partial E_{k}, k \neq j$, by the Bernstein-Walsh lemma (see [17, p. 77]) we have

$$
\begin{align*}
\left|\tilde{f}_{j}(z)-s_{v+\mu, j}(z)\right| & \leqslant\left\|p_{v, j}\right\|_{E}\left\|_{j}-q_{\mu, j}\right\|_{E} \\
& \leqslant 2 e^{v R_{E}-\mu r_{E} / 3} \leqslant 2 e^{-\mu r_{E} / 4} \tag{3.2}
\end{align*}
$$

if

$$
\mu:=\left[12 \frac{R_{E}}{r_{E}} v\right]+1,
$$

where $[a]$ denotes the integral part of a.
Let

$$
s_{v+\mu}(z):=\sum_{j=1}^{m} s_{v+\mu, j}(z) .
$$

Then

$$
s_{v+\mu}\left(z_{l}\right)=f\left(z_{l}\right) \quad(l=1, \ldots, N) .
$$

For $z \in \partial E_{j}$, according to (3.1) and (3.2),

$$
\left|f(z)-s_{v+\mu}(z)\right| \leqslant \varepsilon_{j}\left(\frac{1}{v}, z\right)+2 m e^{-\mu r_{E} / 4}
$$

Let $n>c_{1}\left(n_{0}+1 / \delta_{0}\right)$, where

$$
c_{1}:=\frac{3 \mu_{0}\left(r_{E}+6 R_{E}\right)}{r_{E}} .
$$

We set

$$
v:=\left[\frac{n r_{E}}{2\left(r_{E}+6 R_{E}\right)}\right] .
$$

Then $v+\mu \leqslant n$, i.e., $p_{n}:=s_{v+\mu} \in \mathbb{P}_{n}$ and for $z \in \partial E_{j}$,

$$
\begin{aligned}
\left|f(z)-p_{n}(z)\right| & \leqslant \varepsilon_{j}\left(\frac{1}{v}, z\right)+2 m e^{-\mu r_{E} / 4} \\
& \leqslant \varepsilon_{j}\left(\frac{c_{2}}{n}, z\right)+c_{3} e^{-c_{4} n}
\end{aligned}
$$

with

$$
\begin{aligned}
& c_{2}=3\left(1+6 \frac{R_{E}}{r_{E}}\right), \\
& c_{3}=2 m e^{3 R_{E}}, \\
& c_{4}=\frac{2 R_{E} r_{E}}{r_{E}+6 R_{E}} .
\end{aligned}
$$

This completes the proof of Theorem 2.

Acknowledgments

The author is grateful to M. Nesterenko for his helpful comments.

References

[1] V.V. Andrievskii, Geometric structure of domains and direct theorems of the constructive theory of functions, Mat. Sb. (N. S.) 126 (168) (1985) 41-58 (in Russian).
[2] V.V. Andrievskii, Metric properties of Riemann's mapping function for the region supplemented to continuum without external zero angles, Sov. J. Contemp. Math. Anal. Arm. Acad. Sci. 24 (1989) 57-68.
[3] V.V. Andrievskii, The Nikol'skii-Timan-Dzjadyk theorem for functions on compact sets of the real line, Constr. Approx. 17 (2001) 431-454.
[4] V.V. Andrievskii, V.I. Belyi, V.K. Dzjadyk, Conformal Invariants in Constructive Theory of Functions of Complex Variable, World Federation Publisher, Atlanta, GA, 1995.
[5] V.V. Andrievskii, I.E. Pritsker, R.S. Varga, Simultaneous approximation and interpolation of functions on continua in the complex plane, J. Math. Pures Appl. 80 (2001) 373-388.
[6] V.K. Dzjadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials, Nauka, Moskow, 1977 (in Russian).
[7] E.M. Dyn'kin, On the uniform approximation of functions in Jordan domains, Sibirsk. Mat. Zh. 18 (1977) 775-786 (in Russian).
[8] O. Lehto, K.I. Virtanen, Quasiconformal Mappings in the Plane, Second ed., Springer, New York, 1973.
[9] K.G. Mezhevich, N.A. Shirokov, Polynomial approximations on disjoint segments, J. Math. Sci. (New York) 98 (2000) 706-716.
[10] Nguen Tu Than', On the approximation of functions by polynomials on a closed set with angles whose complement is finitely connected, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 14 (1981) 293-298 (in Russian).
[11] Nguen Tu Than', Approximation of functions by polynomials on sets with a multiply connected complement, Dokl. Akad. Nauk SSSR 299 (1988) 555-558 (in Russian).
[12] Ch. Pommerenke, Univalent Functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.
[13] I.A. Shevchuk, Approximation by Polynomials and Traces of Functions Continuous on a Segment, Naukova Dumka, Kiev, 1992 (in Russian).
[14] N.A. Shirokov, Approximation in the sense of Dzyadyk on compact sets with complement of infinite connectivity, Russian Acad. Sci. Dokl. Math. 49 (1994) 431-433.
[15] N.A. Shirokov, Approximation by polynomials on compact sets with complement of infinite connectivity, St. Petersburg Math. J. 10 (1999) 197-210.
[16] P.M. Tamrazov, Smoothnesses and Polynomial Approximations, Naukova Dumka, Kiev, 1975 (in Russian).
[17] J.L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Plane, fifth ed., American Mathematical Society, Providence, 1969.

[^0]: E-mail address: andriyev@mcs.kent.edu.

