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Abstract

The Dzjadyk-type theorem concerning the polynomial approximation of functions on a continuum
in the complex planeC is generalized to the case of polynomial approximation of functions on a
compact set inC which consists of a finite number of continua.
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1. Introduction

Let E ⊂ C be a compact set with the connected complement� := C \ E, where
C := C ∪ {∞} is the extended complex plane. DenoteA(E) the class of all functions
that are continuous onE and analytic in the interior ofE. The case of empty interior is
also considered. LetPn, n ∈ N0 := {0, 1,2, . . .}, be the class of complex polynomials of
degree at mostn. For f ∈ A(E) andn ∈ N0, define

En(f,E) := inf
pn∈Pn

‖f − pn‖E,
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where‖ · ‖E denotes the supremum norm onE. By the Mergelyan theorem[6, p. 339]:

lim
n→∞ En(f,E) = 0 (f ∈ A(E)).

Thebehavior ofEn(f,E) is closely related to smoothnessproperties offand thegeometrical
structure ofE. The most delicate part of this theory, known as Dzjadyk-type theorems,
concerns pointwise estimates of the behavior of|f (z) − pn(z)| on the boundaryL := �E
ofE. We refer the reader to[6,16,13,4]and themany references therein for a comprehensive
survey of this subject.Wewould like to observe that the overwhelmingmajority of Dzjadyk-
type direct theorems are proved for the case whenE is a continuum, i.e.,� is simply
connected. The case when� is multiply connected is discussed only in a few papers (cf.
[10,11,14,15,9,3]). Each time the extension of a result from the case of a continuum to the
case of a compact set uses quite specific and non-trivial constructions.
In this paper we show how this extension can be accomplished by using well-known

Bernstein–Walsh lemma on the growth of a polynomial outside the compact set and the
Walsh theorem on polynomial approximation of a function analytic in a neighborhood of a
compact set with connected complement.
As a sample of a Dzjadyk-type theorem we use a recent result about simultaneous

approximation and interpolation of functions on continua in the complex plane[5,
Theorem 1].

2. Main results

In the sequel we denotec, c1, . . . positive constants (possibly different in different oc-
currences) that may depend on parameters inessential to the argument.
First, letE be a continuum (with the connected complement� := C \ E). The most

general continua, for which the direct Dzjadyk-type theorems can be proved, form the class
H ∗ [1] which is defined as follows. We say thatE ∈ H if any two pointsz, � ∈ E can be
joined by an arc�(z, �) ⊂ E whose length|�(z, �)| satisfies the condition

|�(z, �)|�c |z − �|, c = c(E)�1. (2.1)

Let us compactify the domain� by prime ends in the Carathéodory sense[12]. Let �̃ be

this compactification, and let̃L := �̃ \ �. Suppose thatE ∈ H , then all the prime ends
Z ∈ L̃ are of the first kind, i.e., they have singleton impressions|Z| = z ∈ L. The circle
{� : |� − z| = r}, 0 < r < 1

2 diam(E), contains one arc or finitely many arcs, dividing
� into two subdomains: an unbounded subdomain and a bounded subdomain such thatZ
can be defined by a chain of cross-cuts of the bounded subdomain. Let�Z(r) denote the arc
whose unbounded subdomain is the largest for givenZ andr. Thus, the arc�Z(r) separates
the prime endZ from∞.
If 0 < r < R < 1

2 diam(E), then�Z(r) and�Z(R) are the sides of the quadrilateral
QZ(r, R) ⊂ � whose other two sides are the parts ofL. LetmZ(r, R) be the module of this
quadrilateral, i.e., the module of the family of arcs that separate the sides�Z(r) and�Z(R)
inQZ(r, R) [8, p. 133].
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We say thatE ∈ H ∗ if E ∈ H and there existc = c(E) < 1
2 diam(E)andc1 = c1(E)

such that

|mZ(|z − �|, c) − mZ (|z − �|, c)�c1 (2.2)

for anyprimeendsZ,Z ∈ L̃with their impressionsz = |Z|, � = |Z| satisfying|z−�| < c.
In particular,H ∗ includes domains with quasiconformal boundary (see[8]) and the

classesB∗
k of domains introduced by Dzjadyk[6]. For a more detailed investigation of the

geometric meaning of conditions (2.1) and (2.2), see[2].
We study functions defined by theirkth modulus of continuity(k ∈ N := {1,2, . . .}).

There is a number of definitions of these moduli in the complex plane (see[16]). The
definition by Dyn’kin[7] is the simplest to explain. Set

D(z, �) := {� : |� − z|��} (z ∈ C, � > 0).

The quantity

�f,k,E(�) := sup
z∈E

Ek−1(f, E ∩ D(z, �)),

wheref ∈ A(E), k ∈ N, � > 0, is called thek-thmodulus of continuityof f onE. It is
known (cf.[16, Chapter 5]) that the behaviour of this modulus forE ∈ H is essentially the
same as in the classical case of the intervalE = [−1,1]. In particular,

�f,k,E(t�)�c tk �f,k,E(�) (t > 1,� > 0). (2.3)

Denotew = �E(z) the function which maps� conformally and univalently onto� :=
{w : |w| > 1} and is normalized by the conditions

�E(∞) = ∞, �′
E(∞) > 0.

Let

L�,E := {� ∈ � : |�E(�)| = 1+ �} (� > 0),

��,E(z) := dist(z, L�,E) = sup
�∈L�,E

|z − �| (z ∈ C, � > 0).

Theorem 1. Let E = ∪m
j=1 Ej consist ofm ∈ N disjoint continuaEj ∈ H ∗, f ∈

A(E), k ∈ N, and letz1, . . . , zN ∈ E be distinct points. Then for anyn ∈ N, n > N + k,
there exists a polynomialpn ∈ Pn such that

|f (z) − pn(z)|�c1�f,k,Ej
(�1/n,Ej

(z)) (z ∈ �Ej , j = 1, . . . , m),

pn(zl) = f (zl) (l = 1, . . . , N),

with c1 independent of n.

For j = 1, Theorem1 is proved in[5, Theorem 1]. For j >1, the theorem extends the
results from[10,11,9]to more general compact sets and new classes of functions. However,
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the main advantage of Theorem1 is its relatively simple proof which follows immediately
from [5, Theorem 1], (2.3), the inequality

�2�,Ej
(z)�c��,Ej

(z) (z ∈ �Ej , � > 0)

(see[5, (2.1)]) and the following statement which is, in itself, of interest.

Theorem 2. Let E = ∪m
j=1Ej consist ofm ∈ N, m�2, disjoint continuaEj , f ∈

A(E), ‖f ‖E �1, and letz1, . . . , zN ∈ E be distinct points. Let for anyn > n0 ∈ N and
j = 1, . . . , m there be a polynomialpn,j ∈ Pn such that

|fj (z) − pn,j (z)|�εj

(
1

n
, z

)
(z ∈ �Ej),

pn,j (zl) = fj (zl) (zl ∈ Ej),

wherefj := f |Ej
is the restrictionof f toEj ,and the functionεj (�, z), 0< ��1, z ∈ �Ej ,

satisfies,for anyj = 1, . . . , m andz ∈ �Ej , the properties:

(i) εj (�, z) is monotonically increasing in�;
(ii) |εj (�, z)|�1 (���0�1).

Then for anyn ∈ N, n > c1(n0 + 1/�0) there exists a polynomialpn ∈ Pn such that

|f (z) − pn(z)|�εj

(c2
n
, z

)
+ c3 e

−c4n (z ∈ �Ej , j = 1, . . . , m),

pn(zl) = f (zl) (l = 1, . . . , N),

whereck, k = 1,2, 3,4,depend only on E and the choice of pointsz1, . . . , zN .

3. Proof of Theorem 2

Denoteg�(z,∞), z ∈ �, the Green function of� with pole at∞ (see[17]). We extend
it continuously toE by settingg�(z,∞) = 0 for z ∈ E, and consider sets

Er := {z ∈ � : g�(z,∞) < r} (r > 0).

DenoterE to be themaximal positive number such thatEr consists of exactlymcomponents
for r�rE . We also introduce another geometric characteristic ofE as follows:

RE := max
1� j �m

‖ log |�Ej
(·)| ‖�E.

By the maximum principle for harmonic functions

log |�Ej
(z)| − g�(z,∞) (j = 1, . . . , m),

considered in�, we have

rE �RE.
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Now, letj = 1, . . . , m be fixed. Consider the function

hj (z) :=
{
1, z ∈ Ej ,

0, z ∈ E \ Ej .

This function can be extended analytically toErE . Hence, by the Walsh approximation
theorem[17, pp. 75–76]there is	∗

0 = 	∗
0(E) ∈ N, such that for any	 > 	∗

0 there is a
polynomialq∗

	,j ∈ P	 satisfying the inequality

‖hj − q∗
	,j‖E < e−	rE/2.

Therefore, the polynomial

q	,j (z) = q∗
	,j (z) +

N∑
l=1

�(z)

�′(zj )(z − zl)
(hj (zl) − q∗

	,j (zl)),

where

�(z) :=
N∏
l=1

(z − zl),

is of degree at most max(	, N − 1). This polynomial for	 > 	0 = 	0(E, z1, . . . , zN) >

	∗
0 + N − 1 satisfies the following conditions:

‖hj − q	,j‖E < c e−	rE/2 < e−	rE/3,

q	,j (zl) = hj (zl) (l = 1, . . . , N).

Let 	 > 	0, 
 > 	0(n0 + 1/�0). Consider the polynomials
+	,j := p
,j q	,j (of degree at
most
 + 	) and the functionf̃j := f hj .
Note that

s
+	,j (zl) = f̃j (zl) (l = 1, . . . , N).

Moreover, forz ∈ �Ej , we obtain

|p
,j (z)|� |p
,j (z) − f (z)| + |f (z)|�2.

Therefore, forz ∈ �Ej , we have

|f̃j (z) − s
+	,j (z)| � |fj (z) − p
,j (z)| + |p
,j (z)‖hj (z) − q	,j (z)|
� εj

(
1



, z

)
+ 2e−	rE/3. (3.1)

Next, forz ∈ �Ek, k �= j, by the Bernstein–Walsh lemma (see[17, p. 77]) we have

|f̃j (z) − s
+	,j (z)| � ‖p
,j‖E‖hj − q	,j‖E
� 2e
RE−	rE/3�2e−	rE/4, (3.2)
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if

	 :=
[
12

RE

rE


]

+ 1,

where[a] denotes the integral part ofa.
Let

s
+	(z) :=
m∑
j=1

s
+	,j (z).

Then

s
+	(zl) = f (zl) (l = 1, . . . , N).

For z ∈ �Ej , according to (3.1) and (3.2),

|f (z) − s
+	(z)|�εj

(
1



, z

)
+ 2me−	rE/4.

Let n > c1(n0 + 1/�0), where

c1 := 3	0(rE + 6RE)

rE
.

We set


 :=
[

nrE

2(rE + 6RE)

]
.

Then
 + 	�n, i.e.,pn := s
+	 ∈ Pn and forz ∈ �Ej ,

|f (z) − pn(z)| � εj

(
1



, z

)
+ 2me−	rE/4

� εj

(c2
n
, z

)
+ c3 e

−c4 n,

with

c2 = 3

(
1+ 6

RE

rE

)
,

c3 = 2me3RE ,

c4 = 2RE rE

rE + 6RE

.

This completes the proof of Theorem2.
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